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▪ It is the priority of candidate Alzheimer’s disease (AD) therapeutics to
slow progression and preserve quality of life for those on the disease
trajectory

▪ To effectively demonstrate and measure this, randomised controlled
trials would ideally control for factors that alter rates of cognitive decline
independent of the intervention under study

▪ Genome wide association studies (GWAS) have now implicated >40
genes that appear to be associated with elevated disease risk1-3. The
pathways involved have shed light on possible underlying disease
mechanisms

▪ Could these (or other) genes help to predict rates of cognitive decline?
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Greater variability in cross-sectional and longitudinal PACC scores observed in MCI and AD

Phenotype

Polygenic Risk Score Derivation

Kunkle1 GWAS Summary Statistics AD Risk GWAS Phenotype-Specific GWAS

R2 P R2 P R2 P

Case-control 15.6 % 2 × 10−24 20.1% 6 × 10−28 - -

Baseline Cognition (WC) 1.5 % 8 × 10−6 < 1 % 4 × 10−3 < 1 % 2 × 10−8

(CU) < 1 % 0.09 < 1 % 0.26 < 1 % 2 × 10−8

(MCI) 𝟐. 𝟓 % 𝟏 × 𝟏𝟎−𝟑 𝟖. 𝟐 % 3 × 𝟏𝟎−𝟗 𝟏𝟐. 𝟓% 1 × 𝟏𝟎−𝟏𝟑

(AD) < 1 % 0.66 < 1 % 0.33 < 1 % 0.27

Longitudinal Cognition (WC) < 1 % 0.01 1.5 % 2 × 10−4 < 1 % 0.23

(CU) 1.2 % 0.01 < 1 % 0.20 < 1 % 0.24

(MCI) 𝟏. 𝟖 % 𝟎. 𝟎𝟐 𝟒. 𝟓 % 3 × 𝟏𝟎−𝟒 𝟏. 𝟎 % 𝟎. 𝟎𝟗

(AD) 1.1 % 0.24 < 1 % 0.89 2.2 % 0.10
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▪ Samples came from three well-characterised longitudinal cohort studies of ageing: the Australian Imaging Biomarkers and Lifestyle study, the Alzheimer’s 
Disease Neuroimaging Initiative, and the Open Access Series of Imaging Studies

▪ Participants were randomly allocated to either a discovery 2

3
or validation 1

3
data set

▪ Cognition was measured using a Pre-Alzheimer’s Cognitive Composite (PACC)
▪ Devised to detect early cognitive decline due to AD pathology4

▪ Informed by the Mini Mental State Exam, Rey Auditory Verbal Learning, and the                                                
Weschler Logical Memory and Digit Symbol Coding subtests

Outcome

Sample AD Risk Baseline Cognition Longitudinal Cognition

Whole Cohort (WC) 2, 095 (1,038) 2,804 (1,322) 1,851 (898)

Cognitively Unimpaired (CU) - 1,488 (759) 1,077 (525)

Mildly Cognitively Impaired (MCI) - 761 (416) 539 (280)

Alzheimer’s Disease (AD) - 452 (260) 202 (128)

Table 1. Sample Sizes for Discovery GWAS and Validation (brackets) Datasets by Outcome and Cohort

Table 2. Performance of Polygenic Risk Scores by Derivations and Outcome

Genome Wide Association Studies (GWAS) 
Search across the genome for associations between variant(s) and three outcomes

Figure 1. Study Workflow

Cognition GWASs were run in the whole cohort (WC) and repeated across disease stage substrata. 
All models covaried for age, sex, education, top genetic principal component, and disease classification* (WC only)

1. Alzheimer’s Risk
• Binary Case vs Control status
• Additionally computed a 

reference PRS based on a 
large scale GWAS of AD risk 
by Kunkle et al. (2019)1

3. Longitudinal Cognition
• PACC scores over ≥ 3 

observations
• Linear mixed effects model 

with random slope and 
intercept

2. Baseline Cognition
• Cross-sectional PACC 

performance
• Linear regression

Polygenic Risk Scores (PRS) 
GWAS results were used to generate a score which optimally combined variant data to predict GWAS 

outcome in validation data set

Compare performance
PRSs were trained to predict AD risk (both from original and reference GWASs) evaluated against cognitive 

outcomes. Their performance was then compared against the cognition phenotype-specific PRSs

Polygenic Risk Scores (PRS)

Compare performance

Genome Wide Association Studies (GWAS)

Figure 3. Longitudinal Cognitive Performance by clinical classificationFigure 2. Distribution of Baseline Cognitive Performance by clinical classification

GWAS hits varied by phenotype

While PRSs generally had low predictive utility, meaningful effect sizes were seen for cognition in 
MCI. For cross-sectional performance in MCI, the phenotype-specific PRS outperformed the AD risk 
PRS. Interestingly, of the 137 variants in the PRS, 35 were directly mapped to MDC1 and a further 82 

were mapped to nearby regions.

Figure 7. Manhattan plot of GWAS 
results of cross-sectional  (left) and 

longitudinal (right) PACC 
performance in MCI participants

Figure 8. Locus zoom plot showing 
the correlation structure of the 

lead variant in the discovery 
GWAS of baseline MCI PACC 

performance (left), a region plot 
showing the strength of association 
in the discovery and validation sets 

(middle), and a gene map of this 
region (right)  

A novel association was identified between the Mediator of DNA Damage Checkpoint 1 (MDC1) gene and both 
baseline PACC and longitudinal PACC (validation set only). These effects were only observed in MCI.

Figure 4. Manhattan Plot of Case/Control GWAS Figure 5. Manhattan Plot of Baseline PACC GWAS (Whole Cohort) Figure 6. Manhattan Plot of Longitudinal PACC GWAS (Whole Cohort)

• We noted a strong effect for MDC1 for cross-sectional PACC performance in MCI only. The gene was also genome
wide significant in the validation longitudinal models in MCI. The lack of effect in the discovery longitudinal model
may be due to the small sample size for that phenotype

• MDC1 has been observed to be upregulated in AD5 and has a primary role in DNA repair which has in turn been
linked with AD6. Given this and our findings, MDC1 may be a genetic variant of interest

• The utility for PRSs in predicting cognition was restricted to the MCI subcohort. For this group, cross-sectional
performance

performance was best predicted by the phenotype specific PRS (R2 = 12.5% vs 8.2% for the AD Risk PRS)
• Conversely, for the longitudinal phenotype in MCI, the AD Risk PRS explained 4.5% of the variance in rates of

change, while no effect was seen for the phenotype-specific PRS (R2 = 1%, p = 0.09)
• A larger sample has been acquired for future analyses. This will allow us to better model cognitive change by

stratifying by APOE, controlling for amyloid pathology, and extracting individuals who convert between clinical
classifications and aligning their starting points as their point of conversion

Conclusions and Future Directions

References

Introduction Methods


	Slide 1

